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« New Features in Image Processing

— 3-D Image Processing

— Deep Learning for Image Processing

= Deep Learning for Computer Vision

= Deep Learning Network Deployment
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Image Processing Toolbox
Accelerate image processing and algorithm development

Image display and exploration

= Image enhancement

Thermal Image Segmentation

= Image analysis
= Morphological operations

= Image registration
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3-D Image Processing

Over 40 functions support 3-D volumetric image processing

Capabillities Includes:

= |mage arithmetic

= Morphology

= Segmentation

= Geometric transforms
= Enhancement

Volume Viewer App for exploration
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Segment Lungs from 3-D Chest Scan

- Create seed mask
- Active contour technique
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Image Processing Apps

T 2o | GrkAms —
G D—, . ¥ v L2 Owmmysee 9 x
& zomut & i o
5 ooy Lowd e FAST  BRSK  Hem Regater  Green Magerea v | ot
P ot v . o - a2 :
Voput Image e : e
Input Image 4 o _— =
- 1 Phase Comelaton ORAFT v Feature Parameters
ORAFT] eciow
ety f Mt et
J Tere: 0,09
s Rotmron

» Postprocessing

graythresh S0,

Batch Processing

& (eel E
Losdmage | Mew Goor Space | nverttiask __Reset

Color Thresholder

Region Analysis

&\ MathWorks'



4\ MathWorks

Computer Vision Apps
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Image and Video Labeler OCR Training 7
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Deep Learning for Image Processing
Perform image processing using convolutional neural networks

DOCU me n’rclﬁon palll Examples Functions Apps

= CONTENTS R2 O] 8 b

Image Processing Toolbox
Perform image processing, analysis, and algorithm development
Image Processing Toolbox™ provides a comprehensive set of reference-standard algorithms and workflow apps for image processing, analysis, visualization, and algorithm

development. You can perform image segmentation, image enhancement, noise reduction, geometric transformations, image registration, and 3D image processing.

Image Processing Toolbox apps let you automate common image processing workflows. You can interactively segment image data, compare image registration technigues, and
batch-process large datasets. Visualization functions and apps let you explore images, 30 volumes, and videos; adjust contrast: create histograms; and manipulate regions of
interest (ROIs).

You can accelerate your algorithms by running them on multicore processors and GPUs. Many toolbox functions support C/C++ code generation for desktop prototyping and
embedded vision system deployment.

Getting Started
Learn the basics of Image Processing Toolbox

Import, Export, and Conversion
Image data import and export, conversion of image types and classes

Display and Exploration
Interactive tools for image display and exploration

Geometric Transformation and Image Registration
Scale, rotate, perform other N-D transformations, and align images using intensity correlation, feature matching, or control point mapping

Image Filtering and Enhancement
Contrast adjustment, morphological filtering, deblurring, ROl-based processing

Image Segmentation and Analysis
Region analysis, texture analysis, pixel and image statistics

I Deep Learning for Image Processing I
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Apply Denoising Neural Networks

= Built-in pretrained DnCNN network to remove Gaussian noise.

Get pretrained denoising network

dencoisingNetwork

Denoising Workflow

Trained denoising network

'

Remove image noise

Moisy Image
nr

denoiselImage




Train Denoising Neural Networks

Training data generator Get predefined denoising layers Define training options
denoisingImageDatastore dnCNNLayers trainingoptions

Pristine images
ImageDatastore

Properties:
Patch3ize: [50 30 1] Train denoising network
ChannelFormat: 'grayscale' trainNetwork

Denoising Workflow

Trained denoising network

‘

Remove image noise

denoiselImage

Denoised Image

Moisy Image

https: //www mathworks.com/help/images/train-and-apply-denoising-neural-networks.html
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Image Super-Resolution — (1)

= Very-Deep Super-Resolution (VDSR) neural network.
- Estimate a high-resolution image from a single low-resolution image.

RGB Colorspace
— "/_ f- o " ," ’\

Luminance (Y) Channel

Reference | Resid: ol h
High-Resolution & . .
Image Patch
Upscaled 4 ’
Low-Resolution (Magnitude rescaled for
Image Patch visualization)

11



Image Super-Resolution — (2)

High-Resolution Results Using Bicubic Interpolation (Left) vs. VDSR (Right)

"

https://www.mathworks.com/help/images/single-image-super-resolution-using-deep-learning.html

4\ MathWorks
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Using Deep Learning to Reduce Radiation Exposure Risk in CT
Imaging

By Dr. Ryohei Nakayama, Ritsumeikar

Because they produce 3D images of o
significantly greater diagnostic value tr
exposure to potentially harmful radiatic
together by computer software. As a re '.

7 milliseverts (mSv), 350 times higher L—J
risk; guidelines limit the radiation dose yltra-low dose CT

lung region

Medical researchers want to limit radia

approach is the use offultra-low-dose (
principal drawback offulira-low-dose C

for physicians to see organs, fat, and il

other region™~.__

https://www.mathworks.com/company/newsletters/articles/using-deep-learning-to-reduce-radiation-exposure-risk-in-ct-imaging.html 13
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Agenda

= New Features in Image Processing

— 3-D Image Processing

— Deep Learning for Image Processing

= Deep Learning for Computer Vision

« Deep Learning Network Deployment

‘ MathWorks:
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Deep Learning is a Neural Network

Inspired by the structure and function of the brain
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Image Classification using Deep Learning

camera = webcam; % Connect to the camera
hnet = alexnet; % Load the neural net

chain mail (95.40 %) while true

picture = camera.snapshot; % Take a picture

dishrag (2.02 %)

picture = imresize(picture,[227,227]); % Resize the picture
label = classify(nnet, picture); % Classify the picture

image(picture); % Show the picture
title(char(label)); % Show the label
drawnow;

end

P oM m 3 W T TR

Training  Millions of images from 1000 different
(GPU) categories (AlexNet)

Real-time object recognition using a
webcam connected to a laptop 16

Prediction
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MATLAB Integrates with Open Source Frameworks

Pretrained Models*
- AlexNet

- VGG-16

- VGG-19

- GoogLeNet

- InceptionV3

- ResNetl8

- ResNet50

- ResNetl101

- Inception-ResNet-v2
- SqueezeNet

- DenseNet-201

* single line of code to access model

= Import Models from Frameworks
- Caffe Model Importer
- TensorFlow-Keras Model Importer

= Converter for ONNX Model Format

AlexNet VGG-16 ResNet
PRETRAINED MODEL PRETRAINED MODEL PRETRAINED MODEL
Caffe GooglLeNet TensorFlow/Keras
MODELS PRETRAINED MODEL TERELe

https://www.mathworks.com/matlabcentral/fileexchange/?term=authorid%3A1211826 17
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ONNX is an open format to represent deep learning models

-' MATLAB

ONNX = Open Neural Network Exchange Format

‘ MathWorks:

18



ONNX Converter

Import from ONNX format

modelfile = "cifarResNet.onnx';

classes = ["airplane” "automobile" "bir
net = importONNXNetwork(modelfile, "Outp
analyzeNetwork(net)

Export to ONNX format

filename = 'fishdetector.onnx';
exportONNXNetwork({net,filenamea)
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Deep Learning Demo

Image Classification
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Transfer Learning
Access Reference Models in MATLAB

=

Load
Reference
Network

=

Modify
Network
Structure

Transfer Learning

NEY
Classifier

Learn New
Weights

Easily Load Reference Networks
Access Models with 1-line of MATLAB Code

Netl = alexnet
Net2 = vgglhb
Net3 = vggl?9




Transfer Learning
Modify Network Structure

l I Transfer Learning
Load Modify

Learn New

Reference Network Weights
Network Structure 9

Simple MATLAB API to modify layers:
layers (23) = fullyConnectedLayer (5, 'Name',6 'fc8');
layers (25) = classificationLayer ('Name', ‘VehicleClassifier')

=&Y
Classifier

4\ MathWorks
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Deep Network Designer App

= Graphically design and modify networks

= Check for errors in network architectures

lEI £, Zoom In

NN

12y Copy
Mew Impori Duplicate
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Transfer Learning
Training Network

| I Transfer Learning
Load Modify

Learn New

Reference Network Weights
Network Structure 9

Train Any Network
trainNetwork (datastore, layers, options)

=&Y
Classifier

4\ MathWorks
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Deep Learning on CPU, GPU, Multi-GPU and Clusters

= =
= S ®
Je I
N £
Single Single CPU
CPU Single GPU

How TO TARGET?

opts = trainingOptions('sgdm’',
'MaxEpochs', 100,
'MiniBatchSize', 250, ...
'InitiallLearnRate', 0.00005, ...

'ExecutionEnvironment', 'auto' );

opts = trainingOptions('sgdm',
'MaxEpochs', 100, ...
'MiniBatchSize', 250, ...
'InitialLearnRate’', 0.00005,

'ExecutionEnvironment', 'multi-gpu' );
|

|¥ t“"-tl [ N
éfﬁ;hgl I.;!I!!

On-prem server with Cloud GPUs
GPUs (AWS)

opts = trainingOptions('sgdm',
'MaxEpochs', 100, ...
'MiniBatchSize', 250, ...
'InitialLearnRate', 0.00005,

'"ExecutionEnvironment', 'parallel' );
]

4\ MathWorks
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Object Detection

Original Image

ROI detection

Pixel classification

4\ MathWorks
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Semantic Segmentation

CamVid Dataset
1. Segmentation and Recognition Using Structure from Motion Point Clouds, ECCV 2008

2. Semantic Object Classes in Video: A High-Definition Ground Truth Database ,Pattern Recognition Letters

4\ MathWorks
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Ground truth Labeling

“How do | label
my data?”

4\ Ground Truth Labeler
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Application for Semantic Segmentation

Medical Image Segmentation Using SegNet



https://www.mathworks.com/matlabcentral/fileexchange/66448-medical-image-segmentation-using-segnet?s_tid=prof_contriblnk

Agenda

= New Features in Image Processing
— 3-D Image Processing

— Deep Learning for Image Processing

« Deep Learning for Computer Vision

= Deep Learning Network Deployment
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MATLAB is Fast for Deployment

= Target a GPU for optimal performance
« NVIDIA GPUs use CUDA code
= We only have MATLAB code.

Can we translate this?

4\ MathWorks

31



GPU Coder

- Automatically generates CUDA Code from MATLAB Code
— can be used on NVIDIA GPUs

—

- CUDA extends C/C++ code with constructs for parallel computing

4\ MathWorks
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How to Use GPU Coder? Workflow to Embedded Tegra GPU

MATLAB algorithm
(functional reference)

\4
Gl
4 g
L—

a Functional test

(Test in MATLAB on host)

M GPU Coder

Build type

Call CUDA
from MATLAB

E directly

Call CUDA from
(C++) hand-
coded main() or

o [

Call CUDA from (C++)
hand-coded main().
Cross-compiled on host
with Linaro toolchain

v

Cross-compiled
dib

Desktop Desktop Embedded GPU
GPU GPU = p—
— — ‘»ﬁ_— o Fezea iy [
G ® Crt [ ® : E]
E—) 4 E E—) 5 —) & it
Deployment Deployment
unit-test integration-test
(Test generated code in (Test generated code within (Test generated code within
MATLAB on host + GPU) C/C++ app on host + GPU) C/C++ app on Tegra target) 33



GPU Coder Performance

FPS:0.012235

Running in MATLAB

4\ MathWorks
R2018a

Generated Code from GPU Coder

34
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Prediction Performance: Fast with GPU Coder

Images/Sec Prediction (V100 GPU)

600 Why is GPU Coder so fast?

— Analyzes and optimizes
network architecture

— Invested 15 years in code
generation

500
400

300
TensorFlow

MATLAB

I MXNet
100
| ll s 1 Lo

AlexNet ResNet-50 VGG-16

200

35
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Networks deployed with GPU Coder

Vehicle
Detection §&

Alexnet

~30 Fps
(Tegra X1)

~66 Fps
(Tegra X1)

People detection Lane detection

36



Thank you!
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