
Copyright © 2007 by TeraSoft, Inc.

軟體程式碼驗證工具及實例應用

Terasoft, Inc.

CDA engineer : Kary Chang

Copyright © 2007 by TeraSoft, Inc.

Agenda

▪ 簡介

▪ 軟體驗証測試

▪ Demo

Copyright © 2007 by TeraSoft, Inc.

Agenda

▪ 簡介

▪ 軟體驗証測試

▪ Demo

Copyright © 2007 by TeraSoft, Inc.

Text-based
- ambiguous
- difficult to track
- prevents rapid

iteration

Physical prototypes
- aren’t always

available
- are typically

expensive
- don’t test the

complete range of
scenarios

Manual coding
- introduces human error
- takes more time
- doesn’t promote

reusability
- doesn’t leverage the

system-level design of
the software and
hardware

Traditional testing
- defined by

(ambiguous) specs
- doesn’t benefit

from the design
know-how

- errors detected late
in the process

Design Implementation Test and

Verification

Requirements

and Specs

���

傳統嵌入式軟體開發流程的缺點

Copyright © 2007 by TeraSoft, Inc.

Spec
Design

Implement
Test

Introduced

Detected

8%

15%

22%

55%

60%

21%

12%

7%0%

10%

20%

30%

40%

50%

60%

70%

Where Errors Are Introduced... and Detected

Source: “Migration from Simulation to Verification with ModelSim”
by Paul Yanik. EDA Tech Forum, 2004 Mar 11, Newton MA

錯誤太晚被發現，造成大量的時間與金錢的花費

“…each delay in the
detection and
correction of a
design error makes
it an order of
magnitude more
expensive to fix…”

Clive Maxfield and Kuhoo Goyal

“EDA: Where Electronics Begins”

TechBites Interactive, October 1, 2001

ISBN: 0971406308]

Copyright © 2007 by TeraSoft, Inc.
Source: “Migration from Simulation to Verification with ModelSim”
by Paul Yanik. EDA Tech Forum, 2004 Mar 11, Newton MA

Challenge:
Early Verification Saves Time and Cost

Copyright © 2007 by TeraSoft, Inc.

Model elaboration

Design ImplementationRequirements

and Specs

���

Test and

Verification

Executable models
-intuitive
-unambiguous
-complete
-always in sync

Simulation
-defers or eliminates need

for physical prototypes
-explore broad range of

scenarios

Automatic code generation
-eliminates coding errors
-saves time
-promotes design reuse

Test coupled with Design
-more comprehensive
-leverages model
information

-detects errors earlier

Advantages of Model-Based Design

Continuous verification

Copyright © 2007 by TeraSoft, Inc.

MBD savings come from

Copyright © 2007 by TeraSoft, Inc.

目前MBD被大量用於

▪ Aerospace and Defense

▪ Automotive industry

▪ Industry Automation and Machining

▪ Other safety critical applications, ex. Railway,
Medical, Power System and Nuclear…

Copyright © 2007 by TeraSoft, Inc.

Agenda

▪ 簡介

▪ 軟體驗証測試

▪ Demo

Copyright © 2007 by TeraSoft, Inc.

軟體驗証測試

▪ 測試分類方式

▪ 依測試方法分類

▪ 依測試過程分類

▪ 依程式狀態分類

Copyright © 2007 by TeraSoft, Inc.

測試分類方式

▪ 劃分方式不同，有以下分類
• 方法：黑箱、白箱、灰箱

• 過程：單元測試、整合測試、系統測試、驗收測試

• 程式狀態：靜態測試、動態測試

Copyright © 2007 by TeraSoft, Inc.

依測試方法分類

▪ 依測試方法大致分成三類:
• 白箱

− 測試人員直接在軟體程式上進行測試，這類測試包含了語法、
邏輯、路徑等測試

• 黑箱
− 只管Input與Output，主要以產品的功能為指標的測試方法

• 灰箱
− 介於白箱與黑箱之間的測試

Copyright © 2007 by TeraSoft, Inc.

依測試過程分類

▪ 過程包含4測試步驟：
• 單元測試

• 整合測試

• 系統測試

• 驗收測試

Copyright © 2007 by TeraSoft, Inc.

測試步驟

單元測試單元測試單元測試單元測試

整合

測試

整合

測試

驗收

測試

系統

測試

Copyright © 2007 by TeraSoft, Inc.

V&V

▪ 驗證(Verification)
• 主要用來確定軟體內所定義出來的功能有正確的被實

現，而其所執行的功能皆完成
• Are we building the product right?
• 單元測試、整合測試、系統測試

▪ 驗認(Validation)
• 確認所被實現的功能是否符合當初使用者所要求，解

決使用者想解決的事
• Are we build the right product?
• 驗收測試

Copyright © 2007 by TeraSoft, Inc.

V模型1111

▪ V模型特色

• 將測試表示成單一階段，分別為需求分析、高階設計、
細部設計、程試寫作

• V模型描述了數個不同的測試等級及每個層級的生命週
期

• V模型的左側表示的為開發階段的活動，右邊則是與其
相對應的測試階段

Copyright © 2007 by TeraSoft, Inc.

V模型2222

需求分析

結構設計

細部設計

程式寫作

整合測試

驗收測試

系統測試

單元測試

Copyright © 2007 by TeraSoft, Inc.

W模型
需求分析

結構設計

細部設計

程式寫作

整合測試

驗收測試

系統測試

單元測試

需求測試

結構測試

設計測試 建構軟體

建構系統

安裝系統

Copyright © 2007 by TeraSoft, Inc.

單元測試

▪ 低階測試

▪ 獨立測試

▪ 細節容易被看清楚

▪ 通常由程式設計師自行測試

▪ 又稱為元件測試、模組測試、程式測試

Copyright © 2007 by TeraSoft, Inc.

整合測試

▪ 多個單元測試

▪ 可用來測試無法單一測試的群組

▪ 單元間的溝通

▪ 非功能性觀點

▪ 測試策略

• Top-down

• Bottom-up

• Functional

Copyright © 2007 by TeraSoft, Inc.

系統測試

▪ 系統測試是最後的整合步驟

▪ 功能性

• 以功能或需求為基底做測試

• 商業流程為基底做測試

▪ 非功能性與功能性測試一樣重要

• 通常不被重視

• 但此測試是必須被執行的

▪ 通常由測試人員進行測試

Copyright © 2007 by TeraSoft, Inc.

驗收測試

▪ 確認所被實現的功能是否符合當初使用者所要求，
解決使用者想解決的事。

Copyright © 2007 by TeraSoft, Inc.

依程式狀態分類

▪ 依程式執行與否分類：
• 動態測試

測試執行中程式

• 靜態測試 (原始程式分析)

測試未執行的程式

Copyright © 2007 by TeraSoft, Inc.

動態測試1

▪ 單元測試(Unit test)

▪ 白箱測試(White box test)

▪ 黑箱測試(Black box test)

▪ 灰箱測試(Gray box test)

▪ 功能測試(Function test)

▪ 系統測試(System test)

Copyright © 2007 by TeraSoft, Inc.

動態測試2222

▪ 驗收測試 (Acceptance test)

▪ Alpha版測試 (Alpha version test)

▪ Beta版測試 (Beta version test)

▪ 平台測試(Platform test)

▪ 回應測試(Response test)

▪ 壓力測試(Stress test)

▪ 自動測試 (Auto Test)

▪ 回復測試(Recovery Test)

Copyright © 2007 by TeraSoft, Inc.

靜態測試 1111

▪ 靜態檢查

▪ 人工檢查

Copyright © 2007 by TeraSoft, Inc.

靜態測試 2

▪ 靜態檢查
• 資料類型檢查

• 錯誤路徑檢查

• 運算式檢查

• 語法檢查

• 函數檢查

• 邏輯檢查

Copyright © 2007 by TeraSoft, Inc.

靜態測試 3

▪ 人工檢查
• 桌前檢查(Desk Check)

• 同仁檢查(Peer Review)

• 走訪(Walkthroughs)

• 程式碼閱讀(Code reading)

Copyright © 2007 by TeraSoft, Inc.

Our Solution in 測試

動態測試 靜態測試

• MIL/SIL/PIL測試 in
MBD

• Code Coverage
Measurement

• Equivalence Test

• SLDV Formal
Verification Test on
Simulink model

• Polyspace Code
Verification on C/C++

• MISRA C coding rule
check

Copyright © 2007 by TeraSoft, Inc.

Agenda

▪ 簡介

▪ 軟體驗証測試

▪ Polyspace and Demo

Copyright © 2007 by TeraSoft, Inc.

Standards and Regulations

▪ PolySpace products help you to work with these

standards:

• MISRA-C

• DO178-B

• IEC 61508

Copyright © 2007 by TeraSoft, Inc.

Where are the errors in this code?
▪ There are none.

▪ Proven

Copyright © 2007 by TeraSoft, Inc.

Why prove the absence
of run-time errors?

▪ Exhaustive testing is out of reach,
allowing errors to remain in the code.

▪ Consequences
• Latent faults in released code

• Crash during tests or during operations

• The Ariane 5 launcher

▪ 30-40% of errors found in software are
run-time errors.

Ariane 501
European launcher.

Copyright © 2007 by TeraSoft, Inc.

Industries Using PolySpace™ Products
▪ Aerospace and defense
▪ Automotive
▪ Industrial automation and

machinery
▪ Railway transportation
▪ Consumer electronics
▪ Medical devices

Copyright © 2007 by TeraSoft, Inc.

Old pain :
How to avoid releasing software errors?

Coding
errors

Specification
non compliancy

Timing
errors

Run-time
errors

ERRORS IN
SOFTWARE

Compilers, Static analyzers,
Manual code review,

Automatic code generation

Simulation, Unit tests,
Intensive tests,

Lab tests,

?
Something annoying
that causes systems

to fail

Why proving the absence of run-time errors?

Copyright © 2007 by TeraSoft, Inc.

What are run-time errors?

▪ Also known as latent faults because they rarely manifest

directly and frequently

▪ Effects include crashes, unexpected software behavior

during testing and after deployment

Incorrect computation
Overflow, underflow
Division by zero
Square root of

negative value
Illegal type conversion
Unreachable code
And more…

Read access to
non-initialized data

Out-of-bounds array access
Concurrent access on shared

data
Dereferencing through null or

out-of-bounds pointers

Copyright © 2007 by TeraSoft, Inc.

Formal method:
Abstract Interpretation

Red

faulty

Green

reliable

Grey

dead

Orange

unproven

PolySpace Products
For hand-written code

Results are proven for
all possible executions of the code

P
r
o
v
e
n

Copyright © 2007 by TeraSoft, Inc.

PolySpace Products
For modeling tools and automatic code generation

PolySpace results on generated code are traced back to the model.

Applicable to block-diagrams, Stateflow® charts, and legacy C code

Copyright © 2007 by TeraSoft, Inc.

The following slide focuses on the check for division by 0.

How to prove that no error occurred?

▪ Potential run-time errors:
• Are x and y initialized?

• Could a division by 0 occur?

• Could there be an underflow or overflow on ‘-’, ‘/’ or ‘=‘ ?

Verifying x = x / (x – y)

Copyright © 2007 by TeraSoft, Inc.

Executing All Test Cases

How many possible test cases?
1 file

2 inputs: INT on 32 bits

If you execute 1,000 tests, it means you verify

0.000000000000005% of the possible executions.

Usable for finding (functional) bugs…

…but not effective for run-time error

verification

… 232 x 232 = 264

Copyright © 2007 by TeraSoft, Inc.

+

+
+

+

+
+

+
+

+ +
+
+

+
+

+

+
+

+
+

++

+ +

+

+
++

No execution
No simulation
No test cases to write

Verifying x = x / (x – y)

+ +
+

+

+

+y

x

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+
+

+

+

+

+
+

+
+

O

y=x

Type analysis

Abstract interpretation

/

Copyright © 2007 by TeraSoft, Inc.

What color is your code today?
How do you prove code correctness?

T0 + 3 months T0 + 6 monthsT0

Number of
operations

u
n
k
n
o
w

n

0% proven

reliable

Nothing proven

Required for functional testing…

…not suitable to prove code

correctness

unknown

Input values

x

. .
.

.
. ..

unknown

. .
.

.
.

u
n
k
n
o
w

n

Static

analyzers

Copyright © 2007 by TeraSoft, Inc.

Component Verification
www.mathworks.com/products/featured/vv/

Design Code

Production

Model

Production

Model
C Source

Code

C Source

Code
Object

Code

Object

Code

Textual

Requirements

Textual

Requirements

Executable

Specification

Executable

Specification

Code VerificationDesign Verification

Copyright © 2007 by TeraSoft, Inc.

Coding ruleBug detect

Formal verification

Compiler warning code matrics

(No False negative)

(False negative)
Polyspace Bug FinderTM

Polyspace Code ProverTM

Polyspace Bug FinderTM

Polyspace Code ProverTM

Polyspace Code ProverPolyspace Code Prover

Prevent errorPrevent error

Polyspace Bug FinderPolyspace Bug Finder

Error detctionError detction

Code proveCode prove

Polyspace provide code reliability

Auto code
generation or

hand code
detection

File base or
project base
verification

Copyright © 2007 by TeraSoft, Inc.

Thank You For Your Attention

